Sistemi mašinskog učenja su i kompleksni i jedinstveni. Kompleksni su zato što se sastoje od mnogo različitih komponenti i uključuju mnoge različite aktere. Jedinstveni su zato što zavise od podataka, pri čemu se podaci drastično razlikuju od jednog slučaja upotrebe do drugog. U ovoj knjizi ćete naučiti holistički pristup projektovanju sistema mašinskog učenja koji su pouzdani, skalabilni, održivi i prilagodljivi promenljivim okruženjima i poslovnim zahtevima.
Autorka Chip Huyen, suosnivač kompanije Claypot AI, razmatra svaku dizajnersku odluku – kao što su obrada i kreiranje podataka za obuku, izbor karakteristika, učestalost ponovnog treniranja modela i praćenje - u kontekstu kako to može pomoći vašem sistemu u celini da postigne svoje ciljeve. Iterativni okvir u ovoj knjizi koristi stvarne studije slučaja podržane obiljem referenci.
Ova knjiga će vam pomoći da se suočite sa scenarijima kao što su:
• Inženjering podataka i izbor pravih mernih pokazatelja za rešavanje poslovnog problema
• Automatizacija procesa stalnog razvoja, evaluacije, implementacije i ažuriranja modela
• Razvoj sistema za praćenje radi brzog otkrivanja i rešavanja problema koje vaši modeli mogu sresti u proizvodnji
• Arhitektura platforme za mašinsko učenje koja služi u različitim slučajevima upotrebe
• Razvoj odgovornih sistema mašinskog učenja